КОНФЕРЕНЦИЯ FPGA РАЗРАБОТЧИКОВ

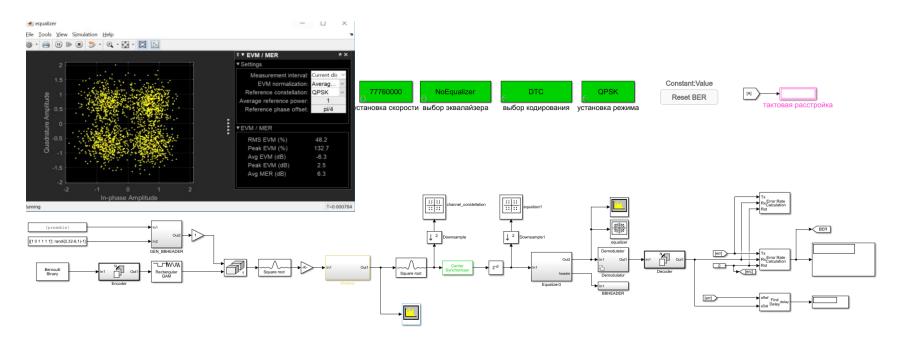
FPGA-Systems 2021.1

Доступно в записи на Youtube

24 апреля 2021 года Москва, Сколково

Бторая конференция FPGA разработчиков FPGA-Systems 2021.1

Генерация HDL кода из моделей MATLAB/Simulink


Дмитрий Шидловский ЦИТМ Экспонента

Характеристики разрабатываемой радиорелейной станции

Скорость данных	2.048-155.520 Мбит/с
Вид модуляции	64QAM, 32QAM, 16QAM, QPSK
Кодирование	Duobinary Turbo Code (1/2, 3/4, 9/10)
Передискретизация/децимация	Фильтр Фарроу
Эквалайзер	LMS
Синхронизация пакетов	Согласованный фильтр
Формирование импульсов	Приподнятый косинус
Аппаратная платформа	ZYNQ-7 ZC706 и ADRV9371

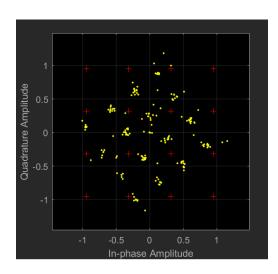
Построение системной модели



Эталон к которому обращались когда возникали проблемы с разработкой

Реализация дубинарного турбо кодека

- 1. Трансформация структуры для эффективной реализации на аппаратуре
- 2. Перевод арифметики в фиксированную точку

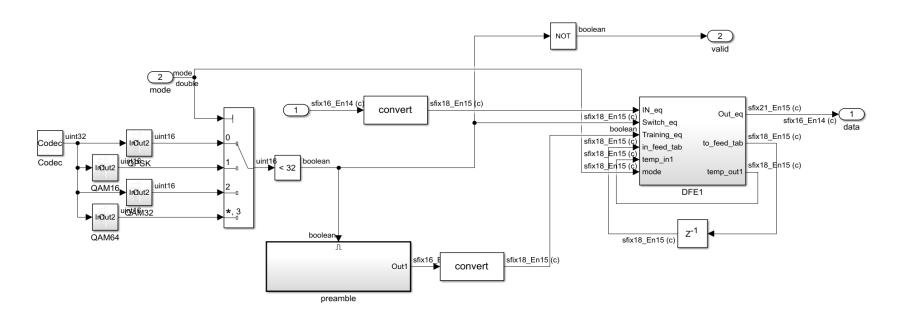

Отладка ошибок

Количество ошибок найденных с помощью различных методов отладки

Отладка на модели	85%	
Отладка на модели с захваченными данными	10%	
FIL тестирование	2.5%	
Отладка с использованием встроенного в ПЛИС логического анализатора	2.5%	

Пример отладки на модели и на модели с захваченными данными

Реализация функции отключение эквалайзера



Улучшение характеристик разрабатываемой системы

- Первый результат режима QPSK ¾ 9 дБ SNR для 1e-5
- Анализ бюджета выявил что наибольшую вклад вносит эквалайзер и канальный кодек на скорости ¾.
- Заменили эквалайзер с двумя отсчетами на выходной символ, на одно отсчетный на выходной символ, уменьшили шаг.
- Увеличили количество итераций кодека с 2 до 5
- Поменяли порядок выкалывания битов
- Текущий результат режима QPSK ¾ 7.2 дБ SNR для 1e-5

Конвейеризация

Для обеспечения обработки отсчетов на частоте не менее 122.88 МГц

Оптимизация HDL кода

• Оптимизация на уровне алгоритма часто работает лучше, чем оптимизация через тонкие настройки синтезатора и разводчика

Дизайн с большим числом fanouts – разводится с таймингом -0.2 ns

```
%% write to buffer
if valIn
    switch nIn
    case 30
        writeInd30 = fi(writeStart+(0:29),0,6,0,hdlfimath);
        buffer(writeInd30+1) = dataIn((1:30)+2);
    otherwise % case 32
        writeInd32 = fi(writeStart+(0:31),0,6,0,hdlfimath);
        buffer(writeInd32+1) = dataIn(1:32);
    end

    writeStart(:) = writeStart + nIn;
    curLength(:) = curLength + nIn;
end
```

66 строк кода

Дизайн с меньшим числом fanouts – разводится с положительным таймингом, на 50% меньше LUT

136 строк кода

Результаты тестирования

Тестирование с имитатором канала

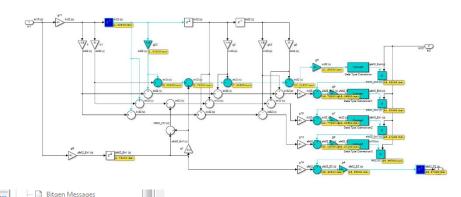
Разрабатываемая радиорелейная станция отработала без ошибок при тестировании через имитатор канала при следующих параметрах канала:

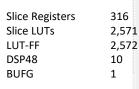
- Замирания Райса
- Вектор амплитуд [-24 0 -9 -14 -19 -23] дБ
- Вектор задержек [0 23.1 30.8 38.5 44.2 50] нс
- Доплер 0.5 Гц

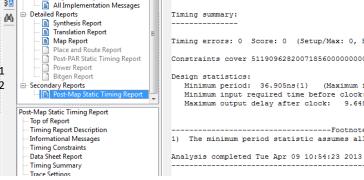
Совпало с результатами моделирования (также при задании тропосферного канала (большие задержки между лучами), система не заработала как модели, так и с имитатором канала)

Ключевые аспекты ускорившие разработку

- Библиотека готовых блоков и переиспользование блоков из других проектов
- Большой процент нахождения ошибок на моделях (~95%)
- Быстрое нахождение скрытых ошибок связанных с переполнениями
- Автоматическая конвейризация
- Сокращение итерации от изменения алгоритма к получению рабочей прошивки

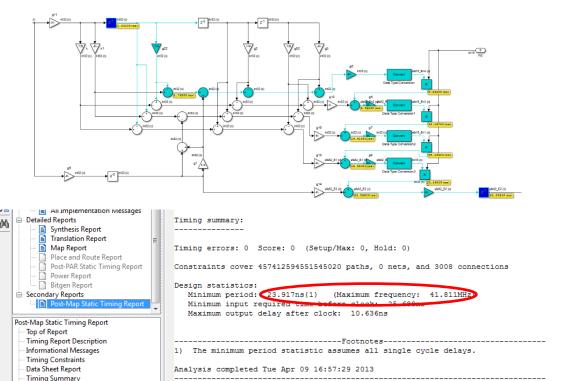

Статистика проекта


Календарное время	~ 10 мес.	
Фактическое время	~4-5 мес.	
Время разработки первого прототипа	~3 мес.	
Время оптимизации системы	~1 mec.	
Время тестирования с измерительной аппаратурой	~1 mec.	
Строк VHDL кода	~250 000	


Оценка качества сгенерированного кода

	Post Route Timing	Slice Registers	Slice LUTs	LUT-FF	DSP48	BUFG		
DC OFFSET								
Generated code	506 MHz	319	329	400	0	1		
Hand-written code	400 MHz	738	680	790	0	0		
QDC								
Generated code	311 MHz	873	633	712	20	1		
Hand-written code	417 MHz	1,446	1,008	1,177	15	1		
DDS								
Generated code	391 MHz	211	148	213	0	1		
Hand-written code	445 MHz	222	204	224	0	1		
FARROW INTERPOLATOR								
Generated code	286 MHz	1,112	1,077	1,180	10	1		
Hand-written code	375 MHz	3,664	3,900	4,017	10	1		

Первая итерация

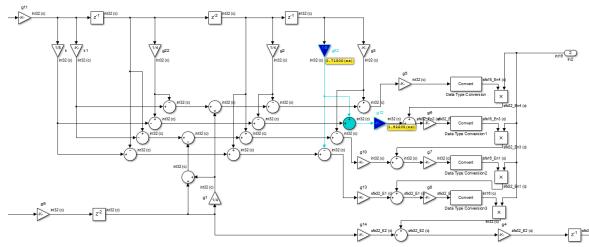


Timing summary: Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0) Constraints cover 51190962820071856000000000000 paths, 0 nets, and 9716 connections Design statistics: Minimum period: 36.905ns{1} (Maximum frequency: 27.097MHz) Minimum input required time before clock: 39.109ns Maximum output delay after clock: 9.648ns -----Footnotes-----1) The minimum period statistic assumes all single cycle delays.

Оптимизация операций с фиксированной точкой

 Slice Registers
 475

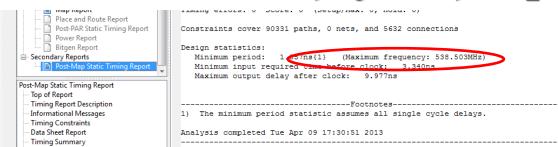
 Slice LUTs
 768


 LUT-FF
 778

 DSP48
 10

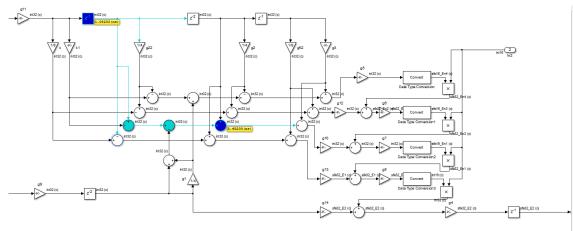
 BUFG
 1

Конвейеризация


 Slice Registers
 1,914

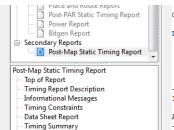
 Slice LUTs
 1,375

 LUT-FF
 1,536


 DSP48
 10

 BUFG
 1

Оптимальный результат

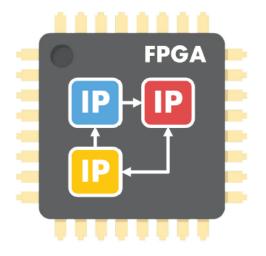

 Slice Register
 1,112

 Slice LUTs
 1,077

 LUT-FF
 1,180

 DSP48
 10

 BUFG
 1


Constraints cover 113685 paths, 0 nets, and 4323 connections

Design statistics:
Minimum period: 3.487ns{1} (Maximum frequency: 286.779MHz)
Minimum input required time below the continuous output delay after clock: 9.496ns

The minimum period statistic assumes all single cycle delays.

Analysis completed Tue Apr 09 18:05:56 2013

IP ядра

Цифровая обработка сигналов

Референс дизайн

Беспроводная связь

Системы LTE

Системы 5G

Нейросети

Компьютерное зрение

Кодирование

Цифровые Интерфейсы

Генерация кода для встраиваемых систем

https://exponenta.ru/news/ip-yadra-dlya-plis

Где нас найти?

fpga-systems.ru

t.me/fpgasystems

youtube.com/c/fpgasystems

github.com/FPGA-Systems

vk.com/club185679360

admin@fpga-systems.ru

Генеральный партнёр конференции FPGA-Systems 2021.1

Первая современная отечественная САПР, реализующая сквозной цикл проектирования печатных плат

Более 30 вендоров уже присоединились для поддержки дизайн-центров

Инструменты поддержки для стартапов по электронике – «от идеи до рынка»

- https://SKOLKOVO.TOOLS аренда САПР по спец цене, изготовление MPW & miniASIC, IP-блоки
- Микрогранты: финансирование САПР, MPW, IP-блоков
- Менторская и консультационная поддержка
- Акселерация организация взаимодействия с крупными компаниями

Информационные партнёры

Сообщество приборостроителей

Где нас найти?

fpga-systems.ru

t.me/fpgasystems

youtube.com/c/fpgasystems

github.com/FPGA-Systems

vk.com/club185679360

admin@fpga-systems.ru

